
THE FLIGHT TELEROBOTIC SERVICER:

FROM FUNCTIONAL ARCHITECTURE TO COMPUTER ARCHITECTURE

RONALD LUMIA

JOHN FIALA

ROBOT SYSTEMS DIVISION

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

ABSTRACT

The NASA/NBS Standard Reference Model for Telerobot Control

System Architecture (NASREM) has been adopted by NASA for use in

the Flight Telerobotic Servicer (FTS), a two armed telerobotic

manipulator which will build and maintain the Space Station.

NASREM is technology independent; the same functions must be

performed by all controllers. NASREM provides the paradigm which

allows the FTS to evolve with technology because standard

interfaces can be defined so that functionally equivalent

software and hardware modules may be interchanged. After a brief

tutorial on the NASREM functional architecture, the approach to

its implementation will be shown. First, interfaces must be

defined which are capable of supporting the known algorithms.

This will be illustrated by considering the interfaces required

for the SERVO level of the NASREM functional architecture. After

interface definition, the specific computer architecture for the

implementation must be determined. This choice is obviously

technology dependent. An example illustrating one possible

mapping of the NASREM functional architecture to a particular set

of computers which implements it will be shown. The result of

choosing the NASREM functional architecture is that it provides a

technology independent paradigm which can be mapped into a

technology dependent implementation capable of evolving with

technology in the laboratory as well as in space.

INTRODUCTION

The requirements of the Flight Telerobotic Servicer (FTS) of the

Space Station are driving the development of robot systems for

space applications. One of the key _equirements is that the
telerobot should be able to evolve with technology. This

requirement implies the need for a reference model or functional

architecture for the control system. A functional architecture

is essential for several reasons. The control system cannot be

developed as a static system but must be conceived to be able to
evolve over time in order to benefit from advances in technology.

Consequently, the architecture must be sufficiently flexible to

support telerobotics in the beginning of the program and to

473

gradually support more autonomy of robot tasks. NASREMprovides
this functional architecture. Another aspect compelling the use
of NASREMis that it provides a common reference model to which
all designs must interface. Previous work in the Automated
Manufacturing Research Facility (AMRF) at the National Institute
of Standards and Technology (formerly NBS) has shown that system
integration is the most difficult challenge [i]. The value
associated with such a standard means that there is a common
basis for the comparison of different design approaches for
solving technical problems.

While the choice of a functional architecture is a crucial
decision for the evolvability of the FTS, it does not contain all
of the information required for a complete design. The purpose
of this paper is to illustrate how a designer would proceed from
the functional architecture to the functioning FTS. This paper
is organized in the following manner to delineate the design
process from conception to realization. First, a description of
the NASREMreference model is presented. Then, the method used
to define the interfaces is presented. This is followed by an
example of how a particular computer architecture can realize the
functional architecture. Finally, the potential impact of NASREM
on both space and terrestrial applications of robots is assessed.

NASA/NBS STANDARD REFERENCEMODEL FOR TELEROBOT CONTROL SYSTEM
ARCHITECTURE (NASREM)

The fundamental paradigm of the control system is shown in Figure
i. The control system architecture is a three legged hierarchy
of computing modules, serviced by a communications system and a
global memory. The task decomposition modules perform real-time
planning and task monitoring functions; they decompose task
goals both spatially and temporally. The sensory processing
modules filter, correlate, detect, and integrate sensory
information over both space and time in order to recognize and
measure patterns, features, objects, events, and relationships in
the external world. The world modeling modules answer queries,
make predictions, and compute evaluation functions on the state
space defined by the information stored in global memory. Global
memory is a database which contains the system's best estimate of
the state of the external world. The world modeling modules keep
the global memory database current and consistent.

The first leg of the hierarchy consists of task decomposition
modules which plan and execute the decomposition of high level
goals into low level actions. Task decomposition involves both a
temporal decomposition (into sequential actions along the time
line) and a spatial decomposition (into concurrent actions by
different subsystems). Each task decomposition module at each
level of the hierarchy consists of a job assignment manager, a
set of planners, and a set of executors.

474

The second leg of the hierarchy consists of world modeling

modules which model and evaluate the state of the world. The

"world model" is the system's best estimate and evaluation of the

history, current state, and possible future states of the world,

including the states of the system being controlled. The "world

model" includes both the world modeling modules and a knowledge

base stored in a global memory database where state variables,

maps, lists of objects and events, and attributes of objects and
events are maintained. The world model maintains the global

memory knowledge base by accepting information from the sensory

system, provides predictions of expected sensory input to the

corresponding sensory system modules, based on the state of the
task and estimates of the external world, answers "What is?"

questions asked by the executors in the corresponding task

decomposition modules, and answers "What if?" questions asked by

the planners in the corresponding task decomposition modules.

The third leg of the hierarchy consists of sensory system

modules. These recognize patterns, detect events, and filter

and integrate sensory information over space and time. The

sensory system modules at each level compare world model

predictions with sensory observations and compute correlation

and difference functions. These are _ntegrated over time and

space so as to fuse sensory information from multiple sources

over extended time intervals. Newly detected or recognized

events, objects, and relationships are entered by the world

modeling modules into the world model global memory database, and

objects or relationships perceived to no longer exist are

removed. The sensory system modules also contain functions which

can compute confidence factors and probabilities of recognized

events, and statistical estimates of stochastic state variable

values.

The control architecture has an operator interface at each level

in the hierarchy. The operator interface provides a means by

which human operators, either in the space station or on the

ground, can observe and supervise the telerobot. Each level of

the task decomposition hierarchy provides an interface where the

human operator can assume control. The task commands into any

level can be derived either from the higher level task

decomposition module, from the operator interface, or from some

combination of the two. Using a variety of input devices, a

human operator can enter the control hierarchy at any level, at

any time of his choosing, to monitor a process, to insert

information, to interrupt automatic operation and take control of

the task being performed, or to apply human intelligence to

sensory processing or world modeling functions.

The sharing of command input between human and autonomous control

need not be all or none. It is possible in many cases for the

human and the automatic controllers to simultaneously share

control of a telerobot system. For example, in an assembly

operation, a human might control the position of an end effector

while the robot automatically controls its orientation.

475

INTERFACE DEFINITION

In order to implement a functional architecture, especially one

like NASREM which allows evolution with technology, the

interfaces must be carefully defined. Although the NASREM

functional architecture specifies the purpose of each module in

the control system hierarchy, it does not completely specify the
interfaces between modules. This section will describe the

method by which the interfaces for the SERVO level of the

hierarchy have been defined. The method involves gathering all

of the algorithms available for SERVO level control, dividing

each algorithm into the parts which inherently belong to task

decomposition, world modeling, and sensory processing, and then

deriving the interfaces which will support these algorithms.

The NASA/NBS Standard Reference Model (NASREM) Telerobot Control

System Architecture, as presented in [2], defines the basic

architecture for a robot control system capable of teleoperation

and autonomy in one system. Recently, efforts have been directed

at specifying in detail the architecture requirements for robotic

manipulation. An important criterion for the design is that it

support the algorithms for manipulator control found in the

literature. This assures that the control system can serve as a

vehicle for evaluating algorithms and comparing approaches. Any

design, however, must constrain the problem sufficiently so that
detailed interfaces can be devised.

With this in mind, the Servo Level design was based on a

fundamental control approach which computes a motor command as a

function of feedback system state y, desired state (attractor)

Yd, and control gains. In this approach, the gains are

coefficients of a linear combination of state errors (y-y). The
system state and its attractor are composed from the _hysical

quantities to be controlled, (i.e. position, force, etc.,) and

can be expressed in an arbitrary coordinate system. This type of

algorithm is the basis for almost all manipulator control schemes

[3]. However, this basic algorithm is inadequate for controlling

the gross aspects of manipulator motion, as described in [8]. The

servo algorithm can provide "small" motions so that the

algorithm's transient dynamics are not significant in shaping the

gross motion. This means that the Primitive Level must generate

the gross motion through a sequence of inputs to the Servo Level.

This can be achieved through an appropriate sequence of either

attractor points [3,4] or gain values [8].

Figure 2 depicts the detailed Servo Level design. The task

decomposition module at the Servo Level receives input from

Primitive in the form of the command specification parameters.

The command parameters include a coordinate system specification

C z which indicates the coordinate system in which the current

command is to be executed. C z can specify joint, end-effector, or

476

Cartesian (world) coordinates. Given with respect to this
coordinate system are desired position, velocity, and
acceleration vectors (Zd, Zd, Zd) for the manipulator, and the
desired force and rate of change of force vectors (fd, fd)"
These command vectors form the attractor set for the manipulator
The K's are the gain coefficient matrices for error terms in the
control equations. The selection matrices (S,S') apply to
certain hybrid force/position control algorithms. Finally, the
"Algorithm" specifier selects the control algorithm to be
executed by the Servo Level.

When the Servo Level planner receives a new command
specification, the planner transmits certain information to world
modeling. This information includes an attention function which
tells world modeling where to concentrate its efforts, i.e. what
information to compute for the executor. The executor simply
executes the algorithm indicated in the command specification,
using data supplied by world modeling as needed.

The world modeling module at the Servo Level computes model-
based quantities for the executor, such as Jacobians, inertia
matrices, gravity compensations, Coriolis and centrifugal force
compensations, and potential field (obstacle) compensations. In
addition, world modeling provides its best guess of the state of
the manipulator in terms of positions, velocities, end-effector
forces and joint torques. To do this, the module may have to
resolve conflicts between sensor data, such as between joint
position and Cartesian position sensors.

Sensory processing, as shown in Figure 2, reads sensors relevant

to Servo and provides the filtered sensor readings to world

modeling. In addition, certain information is transmitted up to

the Primitive Level of the sensory processing hierarchy.

Primitive uses this information, as well as information from

Servo Level world modeling, to monitor execution of its

trajectory. Based on this data, Primitive computes the stiffness

(gains) of the control, or switches control algorithms

altogether. For example, when Primitive detects a contact with a

surface, it may switch Servo to a control algorithm that
accommodates contact forces.

A more complete description of the Servo Level is available in

[3] where the vast majority of the existing algorithms in the

literature are described. The same process for developing the

interfaces based on the literature has also been performed for

the Primitive level and is available in [4]. While the procedure

is planned for each level in the hierarchy, the amount of

literature support tends to decrease as one moves up the

hierarchy.

EXAMPLE OF A COMPUTER ARCHITECTURE TO IMPLEMENT NASREM

Once the interfaces are defined, it is possible to choose a

4_

computer architecture and begin to realize the system. This

section will describe the specific implementation under

construction at NIST. While every effort is being made to do the

job properly, there is no reason to assume that this

implementation is optimal in any way. It is simply illustrates

one realistic method to implement the NASREM architecture.

While a functional architecture is technology independent, its

implementation obviously depends entirely on the state-of-the-art

of technology. The designer must choose existing computers,

buses, languages, etc., and, from these tools, produce a computer

architecture capable of performing the functions of the

functional architecture. The system must adequately meet the

real-time aspects of the controller so that adequate performance

is achieved through careful consideration of computer choice,

multiple processor real-time operating system, inter-processing

communication requirements, tasking within certain processors,

etc. For a more detailed description of this methodology, see
[5].

The NIST implementation considers two aspects of the process:

the development environment on which the code is developed,

debugged, and tested as well as possible, and the target

environment where the code for the real-time robot control system

is executed. Figure 3 shows the approach. A network of SUN

workstations running UNIX is used for the development

environment, sacrificing the speed of the developed code for the

ease of development. Once the code is tested as well as

possible, it is downloaded to the target system. The target

system consists of a VME backplane of several (currently 6)

Motorola 68020 processors. For rapid iconic image processing,

the PIPE system [6] is interfaced. The target hardware drives

the Robotics Research Corporation arm.

From the software side, the multiprocessing operating system used

for the target is required to be as simple as possible so that

the overhead is minimized. The duties of the operating system

are limited to very simple actions such as downloading and

starting up the processors and interprocessor communication.

Tasking is not performed at the lower levels of the hierarchy
because of the overhead associated with context switches. NIST

researchers are currently investigating three alternatives for

tasking: tasking provided by the native compiler, pSOS tasking,

and ADA tasking. Interprocessor communications alternatives

including pRISM, sockets, etc., must also be evaluated

empirically. The actual application code is written in ADA.

Although ADA compilers usually cannot currently produce code as

efficient as other languages such as C, NIST researchers have

shown that the gap is steadily decreasing [7].

The application code is developed by programming the processes

which achieve the functions associated with the boxes in the

functional architecture. The problem then becomes one of

assigning each of the processes, such as those shown in Figure 2,

478

to a particular processor. There is a clear trade-off between
the cost of the solution and the performance of the system.
There are currently no software tools which automatically perform
this assignment based on an arbitrary index of performance. The
approach at NIST is step-wise refinement of the performance of
the system. Given the particular hardware being used, a certain
number of processors is chosen arbitrarily. For that
configuration, the processes are assigned to the processors.
Then, the system is evaluated in terms of its performance. If
the performance is unacceptable, the designer has several
options. The first option is to add more processors. This
alternative is balanced against the possibility of the additional
communication requirements of the processors. Another
alternative is to add faster processors or special purpose
processors, such as dynamics chips, which optimize particularly
compute intensive operations. This trade-off clearly relates to
cost. Another alternative is to reassign the processes to the
processors in order to balance the workload of each processor.
Each _£ the alternatives can be used by the designer in order to
improve the performance of the system. This allows a particular
configuration which implements the functional architecture to
change with time as improvements in technology are realized.

CONCLUSION

The NASREM functional architecture provides the technology
independent paradigm which serves as the foundation from which
any NASREM implementation can be derived. Interfaces may be
developed for the NASREM architecture which will take into
account the research already published in the literature. When a
NASREMimplementation is desired, the result is, by necessity, a
reflection of the current state-of-the-art. However, since the
interfaces are carefully specified, alternative software and
hardware solutions may easily be tested and integrated. This
will allow the FTS to evolve with technology, both for space as
well as for terrestrial applications.

REFERENCES

[I] J.A. Simpson, R.J. Hocken, J.S. Albus. "The Automated
Manufacturing Research Facility of the National Bureau of
Standards," Journal of Manufacturinq Systems, i, I, 1982, 17.

[2] J.S. Albus, R. Lumia, H.G. McCain, "NASA/NBS Standard

Reference Model For Telerobot Control System Architecture

(NASREM)," NBS Technote #1235, also as NASA document SS-

GSFC-0027.

[3] J. Fiala, "Manipulator Servo Level Task Decomposition," NIST

Technote #1255, April 20, 1988.

[4] A.J. Wavering, "Manipulator Primitive Level Task Decom-

position," NIST Technote #1256, January 5, 1988.

479

[5] J. Michaloski,T. Wheatley,and R. Lumia, "Timing Analysis for
a Parallel Pipelined Hierarchical Control System", 9t___hhReal-
Time Systems Symposium, (submitted).

[6] E.W. Kent, M.O. Shneier, and R. Lumia, "PIPE," Journal of
Parallel and Distributed Computinq, Vol. 2, 1985, pp. 50-78.

[7] S. Leake, "A Comparison of Robot Kinematics in ADA and C on

Sun and microVAX," Robotics and Automation Session, IASTED,

Santa Barbara, CA., May 25-27-,1988.

[8] J. Fiala, "Generation of Smooth Trajectories without

Planning," 1989 IEEE Robotics and Automation Conference,

(submitted).

NASREM: NASA/NBS STANDARD REFERENCE MODEL

SENSORY WORLD TASK
PROCESSING MODELING DECOMPOSITION

DETECT MODEL PLAN
INTEGRATE EVALUATE EXECUTE

GOAL

Global
MISSION

MAPS
OBJECT LISTS

STATE VARIABLES
EVALUATION FCNS

PROGRAM FILES

GS MS HS

04 M4 H4
TASK

Ol Mt

N2

HI

pmmvE

COOROINATE
TRANSFORM
SERVO

SENSE
ACTION

O
.I;
m

o
J

m
z
-4
m
J
-!1

o
m

FIGURE 1

48O

SP

positions

Cz K's

Zd' Zd' Zd' Zd S,S"
Primitive/Servo Algorithm

TD Interface fd' fd Status

WM TD i t

I

Zd.zd. Zd.Zdi

. Iscob/ms

: x0. z, z,
Dynamic Model

Processes

I

Job AssignmentJA(1)

Planning

PL(1,s)

Execution

EX(1,s)

i t

T

C too,o,commands

Co
R o

K's

S,S"

Op_al_o_thm

Zm' 2:m'

im' fm

Op_slams

Operator
Interface

FIGURE 2

SYSTEM DEVELOPMENT
(View at Hardware)

ETHERNET
1

Isu l3/280 FILE SER_RS

4/280 j[

IRIS

su s

SUN

3/160

REAL.TIME [

(> 1 sec)

OFF-LINE [ISOFTWARE

DEVELOPMENT

68020 (N processors)
TARGET SYSTEM

1, _ VME BUS

] DOWN LOAD OF EXECRABLE CODE
RETURN OF TARGET VARIABLES

TO DISPLAY FOR USER

REAL-TIME (Ires- lsec)
v (10us-Ires)

FIGURE 3

482

